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ABSTRACT 

One problem of interest to the oceanic engineering com- 
munity is the detection and enhancement of internal wakes 
in open water synthetic aperture radar (SAR) images. In- 
ternal wakes, which occur when a ship travels in a strat- 
ified medium, have a “V” shape extending from the ship, 
and a chirp-like feature across each arm. The Radon trans- 
form has been applied co the detection and the enhancement 
problems in internal wake images to account for the linear 
features while the wavelet transform has been applied to the 
enhancement problem in internal wake images to account 
for the chirp-like features. In this paper, a new transform, a 
localized Radon transform with a wavelet filter (LRTWF), 
is developed which accounts for both the linear and the 
chirp-like features of the internal n&e. This transform is 
then incorporated into optimal and sub-optimal detection 
schemes for images (with these features) which are contam- 
inated by additive Gaussian noise. 

a wavelet function by a window function 

w ,~Aq~~(x, y) = - xcosei-ysine-b 

x lVA(-xsinB + ycose -q), (1) 

where J, E l’(R) is considered to be an admissible wavelet 
which satisfies [lo] 

(2) 

and 

w-~(Z) = 1, 14 < w.; 
0, e!sewhere. (3) 

The forward transform is defined as the inner product of 
the function f with the kerne!: tia.b.q,B. Thus, 

CT :““‘f)(a, b, q, 0) = (f. tia.b.qJp 
1. INTRODUCTION 

The Radon transform (RT) has become extremely useful in 
many areas, particularly in tomography [l, 21. The Radon 
transform accentuates linear features in images and has 
been applied successfully to the enhancement and detec- 
cion problem in SAR open water images [3, 4, 51. However, 
currem methods involving Radon transform techniques do 
not account for the chirp-like features in the wake. 

zcose + ysine -b 
) 

x lVA(-xsine -+ ycose - Q). (1-j 

For the purposes of this work, a rectangular window is suf- 
ficient. However, it is possible to implement a more gener- 
alized window. 

Recently, the waveler; transform has been applied to de- 
tection and enhancekent problems in SAR. images [6, 7, 81, 
including internal wakes in open water images [9]. Although 
the wavelet transform was useful in examining SAR wake 
images, it required extracting azimuth slices of the wake. 
Ideally, a method which does not require explicit extrac- 
tion of line segments is desired. 

In this paper, a new transform, the LRTWF, is devel- 
oped which combines the wavelet transform and the Radon 
transform to account, for the chirp-like feature and the lin- 
ear feature in internai wake images respectiveiy. For the 
LRTWF, extraction of line se,gments external to the trans- 
form is not required. 

The LRTWF was developed using the RT coordinates 
(b,6’). However, the transform can be defined equivalently 
in term.s of rectangular coordinates. Define the parameters 
hP> as 

i- 
Q =qsinB+bcosB p = qcos0 - bsinf3. (5) 

The LRTWF can be written in terms of the rectangular 
coordinates (cu,,@ as 

2. THE LOCALIZED RADON TRANSFORM 
WITH A WAVELET FILTER 

In order to account for the chirp-like feature of the internal 
wake, the kernel of the LRTWF is obtained by multiply& 

CT ‘r’“ff)(a, Q, p, 8) = 
I/ 

dxdYf(z,Y) 

x ~ (z-a)cosB+ (y-P)sinB 

( a ) 
x Wx(-(3:~a),sinB+(y-p)cos6). (6) 

Note that the transforms given in Equations (4) and (6) 
are equivalent and related by the rotational transformation 
given in Equation (5). Another formulation of the LRTWF 
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Figure 1. Diagram illustrating implementation of 
LRTWF. 

can be obtained in terms of the Fourier transforms. 
applying Parseval’s theorem to Equation (6), we find 

x JjJ &(ccose + usine)) 

4 sin ($(-fsinefvc0se)) 
x- 

x $(*sine+vcose) 

,i(4-++) 

the 

BY 

(7) 

The rectangular formulation in Equation (7) provides a 
convenient representation for numerical implementation of 
the LRTWF which is similar to the direct Fourier method in 
the RT. The LRTWF can be obtained by taking the discrete 
Fourier transform of the image, multiplying by the wavelet 
function 

(6):: = &j G(a([k cost9 + 24 sine)) 

and the window function 

( > 

8 4sin($(-5ksine+vrcose)) 
GA =x 

kl $(--&sine+ycose) ' 

and then taking the inverse Fourier transform which is il- 
lustrated in Figure 1. If the analytical form of the Fourier 
transform of the wavelet and window function are known, 
then the rotation information does not require interpola- 
tion. 

3. COMPOSITE DETECTION 

The LRTWF was developed to simultaneously accentuate 
the linear and chirp-like features in internal wake images. 
Next, a quantitatively method of detecting these features 
in images is examined. It is then shown that the LRTWF 
can be used to simplify the detection problem. 

In a traditional binary hypothesis problem [ll, 121, we 
assume that 

H: X=N 
K: X=N+s(a), (8) 

where X is the observation vector of length M, N is a noise 
vector of length M, and s is a signal of length M param- 
eterized by the random variable a. In order to simplify 
the problem, we assume thqt the elements in the vector N 
are observations from an i.i.d. Gaussian random process 
with mean /.r = 0 and variance 0’. In addition, we assume 
that s(cr)*s(a) = 1 and that the parameter a is uniformly 
distributed on 

% = {+O,W, . . . . QQ-1). 

Note that the signal s(a) and the unknown parameter Q 
are general and can be specified by the application. For 
the binary hypothesis problem given in Equation (8), the 
conditional likelihood ratio given the parameter cr is 

L(xla) = e -&sNR~-&x~s(c=) 
3 (9) 

where the signal to noise ratio (SNR) is l/a’. 
The Neyman Pearson (NP) detector is a commonly used 

detector which maximizes the correct detection probability 
subject to a fixed false alarm probability [ll, 121. For this 
detector, a decision rule is obtained by setting a threshold 
on the (unconditional) likelihood ratio, i.e., 

L(x) ;L”= g (10) 

where L(x) = E[ L(x]a)]. Since the density of a is uniform, 
the decision rule reduces to an average, 

Q-1 
Ce3*w4 ; L,, = 01) 
o=o , 

where the constants are incorporated in the threshold. 
Another detector that is used commonly is the maximum 

likelihood (ML) detector [ll, 121. The decision rule for the 
ML Detector is 

maur{L(x]a)} = maa 
{ 

e-~sNRe+xr’(~)} z Lo 2 z 

Since the exponential is a monotonically increasing func- 
tion, equivalently, the decision rule can be written in terms 
of the log likelihood ratio, 

(12) 

where the constants are incorporated in the threshold. 
Next, we consider an image with a chirp-like feature. As- 

sume the test image ~(a, b, q, 0) is a vector of the form, 

s(a,b,q,O) = [soo(~,b,~,~) Sol(a,b,qre) . . . so,vr(a,b,q,e) 

. . . SMO(UjbA,e) w(@w$) . . . SMM(@b,qre)]T, 

obtained by sampling an image function s, 

kd+,q,e) = ~lr( 
%,cosB+y,sine-b 

a > 
x Wx(-e,sint?ty,cose--q), 



and normalizing the vector, s(a, b, q, B)Ts(a, b, q, 0)=1. For 
this problem, we assume the length of chirp-like feature X is 
known and the location, orientation, and scale given by the 
coordinates, a, b, q, and 0 are unknown. In addition, we as- 
sume the random parameters, a, b, q, and 8 are independent 
and contained in the sets 

% = {alao,a1,..., w-1) 

fib = {blbo,bi, . . . . h-1) 

s1, = ~9190,e1,...,9u-1~ 

fill = {eleo,el ,..., evmlj, 

where each element of the set is assumed to have equal 
probability. 

The detection problem for the sample image is a special 
case of the detection problem defined earlier where a = 
h b, 9,e). so, 

For a line segment, the quantity xTs(a, b, q, 0) can be sim- 
plified using the LRTWF, 

p+w/2-1 

XTSb, b, C&e) = c (Tfrtwfs)(a, b, q, e), 
po=p-w/2 

where (T’PtWf s) is the LRTWF of the image, as defined in 
Equation (4). The decision rule for NP Detector in Equa- 
tion (10) can be written in terms of the LRTWF as 

“+2-l (TrPtWfs)(a, b, q, 0) 
po=ps--w/2 

; L,P < ;. (14) 

Similarly, the decision rule for the ML detector for the sam- 
ple image can be written in terms of the LRTWF, 

p-m/2- 1 

E% C( 
T rrtwfs)(a, b, q, 8) 

Po=P--w/2 . i 

(15) 

Next, we consider a chirp-like function shown in Figure 2 
for two values of X. The results for the NP and ML detector 
are shown in Figure 3 with 

Qa = {a/.25,.5 ,..., 4) 

fib = {bj - 2, -1.875, . . . . 1.875) 

% = {ql - 2, -1.875, . . . . 1.875) 

028 = {e10,45, . . . . 315) 

In all three cases, when the SNR is above 13dB the perfor- 
mance of the detector is very good. 

(4 (b) 

Figure 2. Sample images with (a) X = 16 pixels and (b) 
X = 32 pixels. 

The effect of error on the assumed length of the feature, 
X, for this image is shown in Figure 4. The performance 
of the detector degrades when an incorrect feature length 
is assumed. For example, when X = 16 pixels, the true 
length of the feature, the performance of the detector is 
best for both 13dB and 16dB. As the value of X changes, 
the performance of the detector is not as good. The worst 
performance occurs when X has the largest amount of error. 

4. SUMMARY 

Internal wakes occur when a ship travels in a stratified me- 
dia, producing a “V” shape extending from the ship and a 
chirp-like feature across each arm. In this paper, a localized 
Radon transform with a wavelet filter was developed which 
accentuates both the linear and chirp-like features in im- 
ages simultaneously. The LRTWF was then incorporated 
into optimal and sub-optimal detection schemes for images 
with both linear and chirp-like features contaminated by ad- 
ditive Gaussian noise. Results illustrating the performance 
of this detector and the effect of error on the length of the 
linear feature were provided. 
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